

Revised

2015 Marking Scheme

Grade	Mark Re	equired	° condidatos achievina anada
Awarded	(/ ₁₂₅)	%	% canalates achieving grade
A	89+	71.2%	32.5%
В	75+	60.0%	22.9%
С	62+	49.6%	21.7%
D	55+	44.0%	8.3%
No award	<55	<44.0%	11.8%

Section:	Multiple Cho	oice	Extended A	nswer	Investigation	
Average Mark:	29.4	/30	33.8	/70	15.0	/25

2015 revAdv Higher Chem Marking Scheme							
MC Qu	Answer	% Pupils Correct	Reasoning				
1	С	80 oldAH=80	EM Radiation Gamma X-ray UV Visible Infrared Microwave Radio & TV Velocity $3 \times 10^8 m s^{-1}$				
2	D	94 old AH=91	 A Each line is a particular wavelength of light from a particular energy difference B Electrons moving up a level absorb energy not release energy C The visible spectrum lies between the wavelengths 450nm – 700nm D excited electrons dropping down release exact wavelengths as energy is released 				
3	D	94 oldah=92	$ \begin{split} & \blacksquare A \ Sr = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^2 & \therefore \ Sr^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 \\ & \blacksquare B \ Se = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^4 & \therefore \ Se^{2-} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 \\ & \blacksquare C \ As = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3 & \therefore \ As^{3-} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 \\ & \blacksquare D \ Zr = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^2 5s^2 & \therefore \ Zr^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^1 \\ \end{split} $				
4	В	75	A B C D Co ³⁺ - - - 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ H H H H H H H Metals rarely form pyramidal trigonal tetrahedral				
5	В	77 oldah=77	No. of electron pairs = $\frac{1}{2} = \frac{6+3-(+1)}{2} = \frac{8}{2} = 4$ electron pairs (3 bonding + 1 lone pair)				
6	В	61 oldAH=55	Ligand Name Cli metal Charge on Neutral ligands ligand ligands ligand name metal ion Neutral ligands Negative Ligands include: Central Ion: Charge: Ligand Name Chloride Cli chlorido Capative Complex: Charge of central ion is converted H3 ammine Cyanide CNi cyanido Nitrite NO2 nitrito				
7	С	66	 I getting to the second second				
8	С	65	Complex is $[Co(NH_3)_4(OH_2)_2]^{3+}$ and is balanced in charge by three Cl^- ions XNH_3 ligands and $2XOH_2$ ligands give co-ordination number of 6 with central Co^{3+} ion.				
9	A	62	 ☑A Zn²⁺ ions still have a complete d-subshell and form colourless solutions ☑B Ni²⁺ ions have an incomplete d-subshell and give solutions with a green colour ☑C oxidation number of Cr in CrO₄ is VI and gives solutions with yellow colour ☑D Co²⁺ ions have an incomplete d-subshell and give solutions with a red colour 				
10	С	57	Bond order = $\frac{1}{2}$ (number of bonding electrons) - number of anti-bonding electrons Bond order = $\frac{1}{2}(12)$ - 4 Bond order = 2				

11	С	82						
12	В	91 oldAH=89	⊠A Carbon only has 3 different groups attached to the central carbon ⊠B Carbon only has 4 different groups attached to the central carbon ⊠C Carbon only has 3 different groups attached to the central carbon ⊠D Carbon only has 3 different groups attached to the central carbon					
13	A	83	A C-Cl is already polar and the Cl ⁻ ion forms by heterolytic fission B Cl is more electronegative than C is will form Cl ⁻ ion not Cl ⁺ ion C bond in C-CH ₃ is very unlikely to split as it is a non-polar hydrocarbon group D free radicals with unpaired electrons are formed by homolytic fission					
14	A	79 old AH=68	 ☑A KOH in ethanol performs an elimination reaction as HBr is eliminated from C₃H₇Br ☑B CN⁻ ions swaps with Br in a nucleophilic substitution reaction ☑C C₂H₅O⁻ ions swaps with Cl in a nucleophilic substitution reaction ☑D OH⁻ ions swaps with Br in a nucleophilic substitution reaction 					
15	Α	48	sodium + ethanol> sodium ethoxide + hydrogen 2Na + 2C2H5OH> 2Na⁺C2H5O⁻ + H2					
16	В	83	 eaction shown: ketone> secondary alcohol Ketone becoming a secondary alcohol is a reduction reaction LiAlH4 (lithium aluminium hydride) is a reducing agent 					
17	D	52 oldAH=61	A C ₆ H ₅ OH will react with alkalis but not acids B C ₆ H ₅ NH ₂ will react with acids but not alkalis B C ₆ H ₅ NH ₂ will react with alkalis but not acids D H ₂ NC ₆ H ₄ COOH will react with both acids and alkalis A orange β-carotene has a shorter wavelength and higher energy gap than red light B red lycopene has a longer wavelength and lower energy gap than orange light. C if the energy gap was the same then the colour would be the same D the energy gap corresponds to the particular wavelength absorbed to promote e ⁻					
18	A	60						
19	С	60	B peak δ =3 \rightarrow 4 corresponds to O in alcohol/ether. Propanal lacks this chemical group B peak δ =3 \rightarrow 4 corresponds to O in alcohol/ether. Propanal lacks this chemical group C peak δ =3 \rightarrow 4 corresponds to O in alcohol/ether. Propan-1-ol has this chemical group D peak δ =3 \rightarrow 4 corresponds to O in alcohol/ether. Propanal lacks this chemical group					
20	С	53	IC formed from strong acid (HCl) and strong alkali (KOH) ∴ salt pH=7 IB formed from weak acid (CH3COOH) and strong alkali (KOH) ∴ salt pH>7 IC formed from strong acid (HCl) and weak alkali (NH4OH) ∴ salt pH<7 ID formed from weak acid (CH3COOH) and weak alkali (NH4OH) ∴ salt pH nearer 7					
21	В	75 old AH=77	ID Tormea from weak acia (CH3COOH) and weak alkall (NH4OH) ∴ salt pH nearer / A buffer: salt of a weak acid (sodium borate) dissolved in a weak acid (boric acid) B buffers need a weak acid but nitric acid is a strong acid C buffer: salt of a weak acid (sodium benzoate) dissolved in a weak acid (benzoic acid) D buffer: salt of a weak acid (sodium propanoate) dissolved in a weak acid (propanoic acid)					
22	A	79	At absolute zero temperature (OK) crystals have perfect order and an entropy value of zero J K ⁻¹ mol ⁻¹					
23	A	85 old AH=89	\blacksquare A line never crosses zero into positive and $\triangle G$ is always negative \therefore reaction always feasible \blacksquare B when line crosses into positive $\triangle G$ value, reaction is not thermodynamically feasible \blacksquare C when line has positive $\triangle G$ value, reaction is not thermodynamically feasible \blacksquare D when line has positive $\triangle G$ value, reaction is not thermodynamically feasible					

24	В	75 oldah=77	$K = \frac{[SO_3]^2}{[SO_2]^2 \times [O_2]^1} = \frac{16^2}{0.2^2 \times 0.2} = \frac{256}{0.04 \times 0.2} = \frac{256}{0.008} = 32000$ $EA \text{ products are formed } \therefore \text{ thermodynamically feasible } \therefore \Delta G \text{ must be less than zero}$ $EA \text{ products are formed } \therefore \text{ thermodynamically feasible } \therefore \Delta G \text{ must be less than zero}$ $EC \text{ products are formed } \therefore \text{ thermodynamically feasible } \therefore \Delta G \text{ must be less than zero}$ $EC \text{ products are formed } \therefore \text{ thermodynamically feasible } \therefore \Delta G \text{ must be less than zero}$ $EC \text{ products are formed } \therefore \text{ thermodynamically feasible } \therefore \Delta G \text{ must be less than zero}$ $ED \text{ much more products in equilibrium mixture than reactants } \therefore K \text{ greater than 1}$				
25	D	78	$20^{\circ}C \xrightarrow{\times 2} 30^{\circ}C \xrightarrow{\times 2} 40^{\circ}C \xrightarrow{\times 2} 50^{\circ}C \xrightarrow{\times 2} 60^{\circ}C$. Rate increase = x2 x2 x2 x2 = x16				
26	A	72 oldAH=71	Slow step is the rate determining step: $(CH_3)_3CBr \rightarrow (CH_3)_3C^* + Br^-$ Slow step has only one reactant $(CH_3)_3CBr \therefore (CH_3)_3CBr$ is 1^{st} order and OH^- is zero order \therefore Rate = k x $[(CH_3)_3CBr]^1 \times [OH^-]^0 = k [(CH_3)_3CBr]$				
27	В	57	Primary standards should: have high not absorb moisture be readily have a high molecular mass from atmosphere soluble in water degree of purity Sodium hydroxide absorbs moisture from the atmosphere which increases its mass.				
28	D	82	 ☑A measuring cylinders are not accurate enough for this purpose ☑B 1:10 dilution cannot be accurately performed with 10cm³ pipette and 50cm³ flask ☑C measuring cylinders are not accurate enough for this purpose ☑D 25cm³ pipette and 250cm³ standard flask are need for a 1:10 dilution 				
29	D	15	 A The material of the stationary phase will directly affect the distances travelled B The polarity of the component will effect the distances travelled C The chemicals in the mobile phase will effect the distances travelled D Distance moved by solvent front has no effect on the value of R_f. The equation divides the distance moved by the spot by the distance moved by the solvent front 				
30	D	65	barium ions + sodium sulphate				

2015 revAdv Higher Chem Marking Scheme						
Long Qu	Answer	Reasoning				
1 a(i)	Equal/same energy	Degenerate means the orbitals are of equal energy.				
1a (ii)	Any correct statement of Hund's Rules	Each orbital should be filled singly before a second electron fills each orbital.				
1a (iii)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
1b(i)	239nm or 2.39×10 ⁻⁷ m	$E = \frac{L \times h \times c}{\lambda} \therefore \lambda = \frac{L \times h \times c}{E} = \frac{6.02 \times 10^{23} \mathrm{mol}^{-1} \times 6.63 \times 10^{-34} \mathrm{J} \mathrm{s} \times 3 \times 10^8 \mathrm{m} \mathrm{s}^{-1}}{502 \times 1000 \mathrm{J} \mathrm{mol}^{-1}}$ $= 2.39 \times 10^{-7} \mathrm{m} = 239 \mathrm{nm}$				
1b(ii)	No Light wavelengths longer than 239nm	ColourRedOrangeYellowGreenBlueVioletWavelength (nm)640-700600-640560-600480-560450-480400-450EM radiation of 239nm has energy greater than visible light from 400nm-700nm. Visible light lacks enough energy to ionise gaseous sodium atoms100 mmm100 mmm				
2a	194 kJ mol ⁻¹	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)}$ $= (1x+130) + (1x-394) - (1x-348) + (1x-110)$ $= +130 - 394 - (-348 - 110)$ $= -264 - (-458)$ $= +194 \text{ kJ mol}^{-1}$				
2b	133 J K ⁻¹ mol ⁻¹	$\Delta S^{\circ} = \Sigma S^{\circ}_{(products)} - \Sigma S^{\circ}_{(reactants)}$ $= (1 \times 161) + (1 \times 214) - (1 \times 44) + (1 \times 198)$ $= 161 + 214 - (44 + 198)$ $= 375 - 242$ $= +133 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$				
2c	1459 K	The reaction becomes thermodynamically feasible when $\Delta G^{\circ} = 0$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore T\Delta S^{\circ} = \Delta H^{\circ} \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{+194 \times 1000 \text{ J mol}^{-1}}{+133 \text{ J K}^{-1} \text{ mol}^{-1}} = 1458.6 \text{ K}$				
За	Excess reagent is added to analyte. The excess reagent is titrated with 2 nd reagent to work out how much reacted with analyte	A known quantity of either an acid or base is reacted with an unknown quantity of some chemical. How much is left over acid or base remaining can be determined via titration and so how much of it reacted with the other chemical can be worked out to determine the chemical's concentration.				
3b(i)	4.325×10 ⁻⁴ Average titre = $\frac{8.7 + 8.6}{2}$ = $\frac{17.3}{2}$ = 8.65cm ³					
3b(ii)	0.00865	2NaOH + H2SO4 + 0.000005 mmes x 0.005 mmot + = 4.325 x10 * mmot 2NaOH + H2SO4 + 2H2O 2mol 1mol 8.65x10 ⁻⁴ mol 4.325x10 ⁻⁴ mol 25cm ³ sample contained 8.65x10 ⁻⁴ mol NaOH 250cm ³ flask contained 8.65x10 ⁻³ mol NaOH				
3b(iii)	0.01635	Total n o. of mol NaOH = v olume x c oncentration = 0.025litres x 1.00mol l ⁻¹ = 0.025mol NaOH reacted = total NaOH - excess NaOH = 0.025mol - 0.00865mol = 0.01635mol				
3b(iv)	$0.2943g \qquad \begin{array}{c} 2NaOH + C_9H_8O_4 & \hline C_7H_5O_3Na + CH_3COONa + H_2O\\ 2mol & 1mol\\ 0.01635mol & 0.008175mol\\ 1mol C_9H_8O_4 = (9x12)+(8x1)+(4x16) = 106+8+64 = 180g\\ mass of aspirin in 5 tablets = no of mol x gfm = 0.008175 x 180 = 1.4715g\\ mass of aspirin in 1 tablet = 1.4715g/5 = 0.2943g \end{array}$					

3c	Answer to include:	Repeat the experiment with pure/analar acetylsalicylic acid				
4a	hydrolysis or acid hydrolysis	$H = C - C + H_2O + H_$				
4b	One answer from:	To purify (the sulphanilamide) To get rid of impurities To make purer				
4c	65%	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
4d	Answer to include:	The sample is mixed with pure sulfanilamide. If melting point of the mixture will be the same as pure sulfanilamide if sample is pure.				
4e	One from:	Thin layer chromatography (TLC) Infrared Spectroscopy Proton NMR				
5a	4 or IV	VO ²⁺ : Vanadium oxide no. + (-2) = +2 \therefore vanadium oxide no. = +2 - (-2) = +4				
5b	Green colour from mixture of blue and yellow	During the reaction there will be a mixture of yellow VO ₂ ⁺ ions and blue VO ²⁺ ions. For a short period the yellow and blue colours mix together				
5с	3	$V = 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{3}4s^{2} \therefore V^{2+} = 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{3}$				
5d	Vanadium ions oxidised/	When the stopper is removed , oxygen enters flask and reacts with vanadium ions to form blue VO^{2*} by an oxidation reaction (oxidation number increases $2 \rightarrow 4$)				
6a (i)	0.36	$N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$ $\stackrel{Imol}{\longrightarrow} 2NO_{2(g)}$ $\stackrel{Imol}{\bigcirc} 0.12mol \\ 0.24mol \\ 0.24mol \\ 0.24mol \\ K = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(0.24)^2}{0.16} = \frac{0.0576}{0.16} = 0.36$				
6a (ii)	Forward reaction is endothermic as decreasing temperature favours reverse reaction	Decreasing temperature favours the reverse reaction. At 127°C, K=0.36 and at 25°C, K=0.12 ∴ as temperature decreases K decrease ∴ value of K decreases when [products] decreases and [reactants] increases ∴ reverse reaction is favoured				
6b(i)	x = 7.40x10 ⁻⁴ y = 2.96x10 ⁻³	From equation: rate = k[NO] ² 2 nd order with respect to NO zero order with respect to H2 Compare 0+0: [H2]x2 but H2 is zero order \therefore no change of rate \therefore x =7.40x10 ⁻⁴ Compare 0+0: [NO]x2 but NO is 2nd order \therefore rate quadruples \therefore y =7.40x10 ⁻⁴ x4 = 2.96x10 ⁻³				
6b(ii)	185 l mol ⁻¹ s ⁻¹	Rate = k[NO] ² :: k = $\frac{\text{Rate}}{[NO]^2}$ = $\frac{7.40 \times 10^{-4} \text{ mol } l^{-1} s^{-1}}{(2.00 \times 10^{-3} \text{ mol } l^{-1})^2}$ = $\frac{7.40 \times 10^{-4} \text{ mol } l^{-1} s^{-1}}{4.00 \times 10^{-6} \text{ mol } l^{-2}}$ = 185 l mol ⁻¹ s ⁻¹				

		3 mark answer	2 mark answer	1 mark answer
7	Open Question Answer to Include:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.
8a	sp²	The carbon atoms is a be electron in the 4^{th} unhybring of 6 π electrons	nzene ring have sp² hybri ¬idised p-orbital becomes	disation and the part of the delocalised
8b(i)	CH3Cl and AlCl3	Combination from: Reactant Catalyst	Chloromethane CH ₃ Cl Bromometha FeCl ₃ AlCl ₃ FeBr ₃	ne CH3Br AlBr3
8b(ii)	Electrophilic substitution	CH ₃ Cl heterolytically split	ts into CH3 ⁺ and Cl ⁻ with A CH3 H	AICI3 catalyst CH3 methylbenzene
8c(i)		-OH group number 1 in b -NO2 nitro g placed on carbo	is carbon enzene ring roups then ons 2,4 and 6	NO₂
8c(ii)	NO₂⁺	Nitronium ion formed by: NO2 ⁺ <u>conc HNO3</u> <u>conc HNO3</u> <u>conc HNO3</u> <u>conc HNO3</u>	$HNO_3 + H_2SO_4 \rightarrow NO_2$ NO_2 H H H H H H H H H H	D2 ⁺ + H ₃ O ⁺ + 2HSO ₄ ⁻ NO ₂ NO ₂ nitrobenzene
9a	Alternating single and double bonds or conjugated system	A conjugated system is a double bonds between ca light in the visible region viewed from outside.	section of a molecule wit rbon atoms. The system o leaving the remaining way	h alternating single and of Pi bonds can absorb velengths as the colour
9b	Red and green wavelengths are absorbed but blue wavelengths are transmitted	The colour of a substance are not absorbed by the s the red and green wavele remaining wavelengths (in colour.	e corresponds to the colo substance. For a substanc ngths are absorbed by th a this case blue) are trans	ur wavelengths that ce to be blue in colour ne substance and the smitted to give the blue
9с	Diagram showing:		$\sum_{\substack{l \\ l \\ l \\ l}} \sum_{\substack{l \\ l} \sum \\ l} \sum_{\substack{l \\ l}} \sum_{\substack{l \\ l} \sum \\ l} \sum_{\substack{l \\ l} \sum \\ l} \sum \\ i \\ i \\ l} \sum \\ i \\ l} \sum \\ i \\$	\sum

9d	C10H11NO4	OH O NO2	drawn out ► H -		Ч ОННОН С-С-С-С-Ц-Н ННННН				
9e	Addition	Propanone CH3COCH3 adds of with -H joining to the O of the C=O group.	opanone CH_3COCH_3 adds across C=O carbonyl group of 2-nitrobenzaldehyde th -H joining to the O of the C=O group and -CH $_2COCH_3$ adding to the C side o we C=O group.						
10a	2-chloro-2-methylpropane or 2-chloromethylpropane	(CH3)3CCl has the full structural formula:	$(CH_3)_3CCI has the fullstructural formula: H - C - C - CIH - C - HH - C - HH - C - HH - C - HH - C - H$						
10b	Both structures:	$H H H I I H - C = C - C$ $CH_2 = CH_2 = CH$	H H - C – C – H H H CH ₂ CH ₃	$H = H = H$ $H = C = C$ H $CH_3CH = C$ $(but-2-e)$	H H C - C - H H CHCH3 me)				
10c(i)	2-methylpropan-1-ol	3 carbon alkane with -OH gr	roup on C_1 and \cdot	-CH3 group on	C ₂				
10c(ii)	HOCCI H H	$\begin{array}{c} CH_{3} \\ CH_{3$							
10d	H H H H H-C-C-C-C-C H H H H	Isomer A I CH ₃ CHClCH ₂ CH ₃ (CH 2-chlorobutane 1-chlorobutane	somer B 3)2CHCH2Cl -2-methylpropane	Isomer C (CH3)3CCl 2-chloro-2-methylpi	Isomer D CH3CH2CH2CH2CI rapane 1-chlorobutane				
10e	3	Isomer B (CH ₃) ₂ CHCH ₂ Cl would Structural Unit Chemical Shift Relative intensity	d produce three RCH2X 4.2-2.2 2	peaks on a Prot RCH3 1.5-0.9 3	on NMR spectrum R ₃ CH 1.5-0.9 1				
10f	A must be racemic B is no chiral carbon	A has a chiral carbon with four di then the sample must have equal Isomer B is optically inactive as i	ifferent groups at quantities of each t lacks a chiral ca	ttached. For ison a optical isomer (rbon with 4 diffo	ner A to be optically inactive (called a racemic mixture). erent groups attached.				
11a(i)	Answer to include:	Lone pair of electrons on th	e N atom/amin Reactant B is a	e group of rea	actant B donates				
11a (ii)	3570-3200	The product has a hydroxyl or B has. Alcohols and pheno between 3570-3200 cm ⁻¹ .	group on the s ols contain an -	ix carbon ring OH group and	than neither reactant A have an absorbance peak				
11b	Open Question Answer to Include:	3 mark answer Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	2 mark Demonstrates a re understanding of - involved, making si statement(s) whic the situation, show problem is unders	answer easonable the chemistry ome h are relevant to wing that the tood.	1 mark answer Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.				

		Mass of carbon in CO ₂ = ¹² / ₄₄ x 3.52g = 0.96g Mass of hydrogen in H ₂ O = ² / ₁₈ x 2.16g = 0.24g Mass of sulphur in SO ₂ = ^{32.1} / _{64.1} x 2.56g = 1.28g				
		Elements	С	Н	S	
		Mass or %	0.96g	0.24g	1.28g	
12a	C₂H₀S	Divide by RAM	0.96g 12g mol ⁻¹ = 0.08mol	0.24g 1g mol ⁻¹ = 0.24mol =	<u>1.28g</u> 32.1g mol ⁻¹ 0.04mol	
		Divide through b smallest number	$\begin{array}{c} 0.08 \text{ mol} \\ \hline 0.04 \text{ mol} \\ = 2 \end{array}$	0.24mol 0.04mol = 6	0.04mol 0.04mol 1	
		Empirical Formul	1 2	6	1	
12b	$ \begin{pmatrix} H \\ - \\ H - \\ - \\ H \end{pmatrix}^{+} \text{ or } \begin{pmatrix} H \\ - \\ - \\ H \end{pmatrix}^{+} $	Peak at ^m /z = 47 ∴ fragment As S atom has mass or 32, r ∴ remaining fragment is CH.	has mass of 470 emaining fragme 3 with mass of 15	amu nt has mass of 15 5		
		Peak	1	2	3	
	НН	Chemical Shift/ppm	1.2	1.5	2.4	
12c	н_с_s_н	Structure	CH₃		CH2	
		Relative Area under peak	97	32	65	
	нн	No of Hydrogen in group	3	1	2	